201 research outputs found

    Spectral asymmetries in nucleon sum rules at finite density

    Full text link
    Apparent inconsistencies between different formulations of nucleon sum rules at finite density are resolved through a proper accounting of asymmetries in the spectral functions between positive- and negative-energy states.Comment: 10 pages in RevTeX, OSU-090

    The Axial-Vector Current in Nuclear Many-Body Physics

    Full text link
    Weak-interaction currents are studied in a recently proposed effective field theory of the nuclear many-body problem. The Lorentz-invariant effective field theory contains nucleons, pions, isoscalar scalar (σ\sigma) and vector (ω\omega) fields, and isovector vector (ρ\rho) fields. The theory exhibits a nonlinear realization of SU(2)L×SU(2)RSU(2)_L \times SU(2)_R chiral symmetry and has three desirable features: it uses the same degrees of freedom to describe the axial-vector current and the strong-interaction dynamics, it satisfies the symmetries of the underlying theory of quantum chromodynamics, and its parameters can be calibrated using strong-interaction phenomena, like hadron scattering or the empirical properties of finite nuclei. Moreover, it has recently been verified that for normal nuclear systems, it is possible to systematically expand the effective lagrangian in powers of the meson fields (and their derivatives) and to reliably truncate the expansion after the first few orders. Here it is shown that the expressions for the axial-vector current, evaluated through the first few orders in the field expansion, satisfy both PCAC and the Goldberger--Treiman relation, and it is verified that the corresponding vector and axial-vector charges satisfy the familiar chiral charge algebra. Explicit results are derived for the Lorentz-covariant, axial-vector, two-nucleon amplitudes, from which axial-vector meson-exchange currents can be deduced.Comment: 32 pages, REVTeX 4.0 with 12pt.rtx, aps.rtx, revsymb.sty, revtex4.cls, plus 14 figures; two sentences added in Summary; two references adde

    Corrections to nuclear energies and radii in finite oscillator spaces

    Full text link
    We derive corrections to the ground-state energies and radii of atomic nuclei that result from the limitations of finite oscillator spaces.Comment: 6 pages, 6 figure

    Nuclei in a chiral SU(3) model

    Get PDF
    Nuclei can be described satisfactorily in a nonlinear chiral SU(3)-framework, even with standard potentials of the linear σ\sigma-model. The condensate value of the strange scalar meson is found to be important for the properties of nuclei even without adding hyperons. By neglecting terms which couple the strange to the nonstrange condensate one can reduce the model to a Walecka model structure embedded in SU(3). We discuss inherent problems with chiral SU(3) models regarding hyperon optical potentials.Comment: 25 pages, RevTe

    QCD Sum Rules, Scattering Length and the Vector Mesons in Nuclear Medium

    Get PDF
    Critical examination is made on the relation between the mass shift of vector mesons in nuclear medium and the vector-meson - nucleon scattering length. We give detailed comparison between the QCD sum rule approach by two of the present authors (Phys. Rev. {\bf C46} (1992) R34) and the scattering-length approach by Koike (Phys. Rev. {\bf C51} (1995) 1488). It is shown that the latter approach is mortally flawed both technically and conceptually.Comment: 16 pages, latex, 4 figures appended as uu-encoded fil

    Static properties of nuclear matter within the Boson Loop Expansion

    Full text link
    The use of the Boson Loop Expansion is proposed for investigating the static properties of nuclear matter. We explicitly consider a schematic dynamical model in which nucleons interact with the scalar-isoscalar sigma meson. The suggested approximation scheme is examined in detail at the mean field level and at the one- and two-loop orders. The relevant formulas are provided to derive the binding energy per nucleon, the pressure and the compressibility of nuclear matter. Numerical results of the binding energy at the one-loop order are presented for Walecka's sigma-omega model in order to discuss the degree of convergence of the Boson Loop Expansion.Comment: 40 pages, 13 figure

    Phase transition from quark-meson coupling hyperonic matter to deconfined quark matter

    Get PDF
    We investigate the possibility and consequences of phase transitions from an equation of state (EOS) describing nucleons and hyperons interacting via mean fields of sigma, omega, and rho mesons in the recently improved quark-meson coupling (QMC) model to an EOS describing a Fermi gas of quarks in an MIT bag. The transition to a mixed phase of baryons and deconfined quarks, and subsequently to a pure deconfined quark phase, is described using the method of Glendenning. The overall EOS for the three phases is calculated for various scenarios and used to calculate stellar solutions using the Tolman-Oppenheimer-Volkoff equations. The results are compared with recent experimental data, and the validity of each case is discussed with consequences for determining the species content of the interior of neutron stars.Comment: 12 pages, 14 figures; minor typos correcte

    Local Projections of Low-Momentum Potentials

    Full text link
    Nuclear interactions evolved via renormalization group methods to lower resolution become increasingly non-local (off-diagonal in coordinate space) as they are softened. This inhibits both the development of intuition about the interactions and their use with some methods for solving the quantum many-body problem. By applying "local projections", a softened interaction can be reduced to a local effective interaction plus a non-local residual interaction. At the two-body level, a local projection after similarity renormalization group (SRG) evolution manifests the elimination of short-range repulsive cores and the flow toward universal low-momentum interactions. The SRG residual interaction is found to be relatively weak at low energy, which motivates a perturbative treatment
    corecore